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1. INTRODUCTION

The typical required accuracy of simulation results for engineering purposes is between
5% and 20%. The objective of electrical field calculations related to electronic devices is
the prediction of electrical behavior, namely the voltage current characteristics. To main-
tain flexibility with space-charge effects or different dielectric materials in view, the finite
element method (FEM) remains the method of choice for simulation of most kinds of
devices. In resistance and capacitance calculations referring to capacitors, resistors, tran-
sistors, etc., the desired parameters can be extracted based on the energy balance, using
computationally stable integration. In [1] it is shown that errors below 1% can be easily
achieved using relatively coarse approximations in both the representation of the geometry
and the discretization if not local field values but rather energy integrals are used to calcu-
late resistance or capacitance. In the case of field emitter devices, however, the use of field
strength obtained by estimating the local derivative of the potential cannot be avoided. In
addition two effects act together to make the problem of field emitter devices especially
critical:

• The device geometry exhibits large and small geometrical dimensions at the same
time, which makes extreme local mesh refinement necessary.
• The local current density is related to the field strength via an exponential relationship

(Fowler–Nordheim relationship [2–4]).
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In this paper the computational accuracy achieved by the finite element method is in-
vestigated experimentally. The criteria used are the convergence of solutions as local mesh
refinement is improved and comparison with an analytical approximation. Two problems
are common to analytical solutions used for technical tasks:

• They are valid for model geometries only with certain symmetry properties.
• Even for symmetric geometries they are applicable only if certain constraints on pa-

rameters are observed.

In spite of these shortcomings the analytical solution was found useful in characterizing the
accuracy of the finite element computation.

2. THE PHYSICAL MODEL

The miniaturization of vacuum-electronic devices has become a new field of research
within microsystems technology. A central point in recent research is the investigation of
new mechanisms for current emission. Since devices using thermionic emission are difficult
to realize on micrometer scale, emphasis is put on enhancing cold emission properties. The
most critical aspect is the optimization of device geometry so that a high local electrical field
is obtained. This is achieved by manufacturing devices that exhibit sharp edges. Mechanisms
for electron emission are discussed elsewhere [2]. They lead to a relationship between the
local electrical field and current density known as the Fowler–Nordheim relationship. This
relationship is given by the formula

j (E) = AE2

ϕ · t2
e−Bν(y)φ3/2/E, (1)

where

ν(y) = ν0− y2
0

E

ϕ2
,

and A, B, t, ϕ, ν0, and y0 are constants (e.g., [2]). Please note that current densityj (E)
rises exponentially with the local electrical field strengthE.

A typical field emitter geometry is sketched in Fig. 1. IfE represents the surface of the
emitter andG the surface of the gate, the PDE model can be summarized as follows [5]:

FIG. 1. Real-life emitter geometry. The structure is rotational symmetric with the dashed line as the symmetry
axis. The shown ratioR/h does not represent a realistic geometry; it is typically less than 0.01. See [6, 7] for
micrographs showing real-life devices.
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Solve

18 = 0 (2)

Dirichlet boundary conditions8 = 0 on E and8 = V on G

Neumann boundary conditions on all other boundaries.

As outlined in [3] the resulting currentI is obtained by integrating

I =
∫ ∫

S

j (E) da (3)

over the surface of the emitter tip, where the relationshipj (E) is given by Eq. (1).

3. THE FLOATING SPHERE EMITTER MODEL

The geometry shown in Fig. 1 can be simplified by making use of the fact that current
emission takes place on the tip of the emitter only. The tip of the emitter is modelled by a
floating sphere and the rest of the emitter is neglected. The resulting geometry is shown in
Fig. 2. The question of whether this model is a good approximation of the real-life problem
is not the subject of this paper. We have realized the model geometry using finite elements,
thus allowing a direct comparison between analytical and numerical results. The expression
needed for current integration is

Er = V

d

(
h

R
+ 3 cos2

)
. (4)

This equation is frequently quoted in the literature on field emitters (e.g., [3, 8]), but the
origin of the formula has not been clear up to now. Therefore it will be shown in the
following how this equation is derived. A potential distribution can be constructed using a
superposition of a linear and two sphere-symmetric contributions. The latter are solutions

FIG. 2. Configuration of floating sphere emitter model with potential boundary conditions in comparison
with a real-life geometry. Note that the exact shape of the upper electrode cannot be represented in the analytical
model.
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of the Laplace equation known as the point-charge and the point-dipole solution in spherical
coordinates (e.g., [9]):

8(r,2) = V

d

(
h+ r · cos2− h · R

r
− R3

r 2
cos2

)
. (5)

By forming the partial derivative with respect tor and settingr = R it can be easily shown
that the electrical field, Eq. (4), is derived from this potential model. In order to check the
boundary conditions, Eq. (5), we introduce thez-coordinate and eliminate2 by substituting
z= h+ r · cos2,

8(r, z) = V

d

(
z− h · R

r
− R3

r 3
(z− h)

)
. (6)

It is obvious that the Dirichlet boundary condition8 = 0 cannot be satisfied exactly at
the bottom plane (z= 0, r = h) by the point-charge and the point-dipole solutions, which
exhibit spherical symmetry. By substituting the above-mentioned coordinate values we end
up with a potential error on the order of magnitudeV · R/h. The same is true for the top
plane. Therefore the expression for the electrical field is only an approximation and it is valid
for R¿ h and R¿ d only. This condition is typically satisfied for field emitter devices
with a total height of 1µm and a tip radius of less than 10 nm.

4. RESULTS OF THE COMPUTATIONAL EXPERIMENT

Potential distributions for model problems were evaluated with different meshes using
the ANSYS software. The values of field strength were computed for an applied voltage
of 40 volts. A minimum mesh size was defined via a parameterR/d which determines the
ratio of the radius of the emitter tip to the element size near the emitter. A coarser mesh was
used in the other parts of the domain. Only the local mesh size near the emitter tip has been
reduced in the critical region, leaving the rest of the mesh unchanged. A consistent reduction
of mesh size is impractical due to existing limitations on problem size. By adjusting the
boundary discretization a smooth transition from fine to coarse mesh could be achieved,

FIG. 3. Relative computational error as a function of the minimal mesh size for 4-node bilinear (lin) and 8-
node second-order (sqr) elements. Achieved accuracies for field strength (E) and current density (J) are compared.
The error of the analytical solution was 2.8× 10−3 for the field strength and 5.1× 10−2 for the current density.
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TABLE I

Real-Life Configuration Computed with Different Sets of Mesh Parameters

Element Type R/d Emax [V/µm] Jmax [A/cm2]

8-node, 2nd order 62.5 1639.44 39
PLANE121

8-node, 2nd order 31.2 1637.48 38
PLANE121

8-node, 2nd order 15.6 1632.40 35
PLANE121

8-node, 2nd order 7.8 1609.52 25
PLANE121

4-node, bilinear 15.6 1496 4.4
PLANE55

4-node, bilinear 7.8 1347 0.29
PLANE55

thus avoiding degenerate element shapes. The relative errorεr was used as a measure for
the computational accuracy,

εr = Et − E

Et
, (7)

where Et denotes the “true” value of the field strength, andE the computed value.Et

was estimated by extrapolating the computed values of the last two mesh-refinement steps.
The experiment was performed for a real emitter geometry (Fig. 1) and the floating sphere
configuration (Fig. 2)

The computed values for the local field strength and current density of a real-life config-
uration (Fig. 1) are summarized in Table I, where the dependence of computed values for
field strength and current density on the degree of local mesh refinement is demonstrated.
Figure 3 shows the relative error depending on local mesh refinement for the floating sphere
configuration (Fig. 2). Reasonable results were obtained forR/d = 10 or greater using
second-order elements, which provided and accuracy of about 1% for the electrical field
and 10% for the local current density. With a coarser discretization or lower order elements
the error was over 10% for the electrical field and nearly 100% for the local current density.
The error of the analytical solution was very small and comparable to the one obtained with
a fine finite element mesh (R/d = 20).

5. CONCLUSION

It has been shown that the computation of the emission current of field emitters constitutes
a particularly critical task for finite element electrical field calculations. It has been found
experimentally that an acceptable accuracy of an FE solution can only be obtained by
at least second-order elements together with extreme local mesh refinement. The floating
sphere emitter model was shown to be an approximation for the simplified model geometry.
However, if certain constraints on geometry parameters are observed, errors are small
in comparison with the errors of coarse finite element results. Therefore the analytical
approximation is a useful tool for calibration of the mesh generator. The analytical solution
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for the model problem, although not exact itself, can be utilized to identify an insufficient
finite element solution.
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